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Poisson Processes in Biology

|

Henry C..Tuckwell

Department of Mathematics, Monash Uniwersity,
Clayton, Victoria, Australia 3168

. Introduction

A simpie Poisson process, - [N(t), t » 0], with parameter l; is a
random process with stationary independent increments such that if
0 < t, < t2. then | . .

. k ol |
(1) PriN(t,) - N(ty) = k] = [a(t,-t;)] exp[-z(tz-t])]fk.

k = 0,1,2..

" -

As Khintchine [15] pointed out, it is more of a surprise than not
that some natuvrally occurring processes lpook like simple Poisson
processes. This extends into biology. An example arises at the
. junction between nerve and muscie called neuromuscular junction. -
fere 1ittle blips called minjature end plate potentials, representing
changes in the electric potential difference across the muscle
membrane, occur under certain conditions in accordance with the
defining characteristics of a simple Poisson process [ 6,8 ). The
‘Poisson hypothesis' for these events has been looked at very closely
with a battery of statistical tests [ 3,4 ]. Not surprisingly this
has ultimately led to the refutation of the hypothesis. The subject
ijs still of current interest in pharmacology because drugs may have a
drastic effect on the sequence of times of occurrence of the miniat-
ure end plate potentials [20]. As yet the mechanisms involved in the
events which culminate in the miniature end plate potentials have
not been delineated, so it i3 a fertile area for modeling.

We will be concerned with the appliication of Poissen processes in
models in neurobiology and population biology. Some of the work has
appeared and some will appear in more detail in the near future. 1
am indebted to several people with whom the work has been joint or
has benefited greatly from discussion - Davis K. Cope, Floyd B.
Hanson, John B. Wailsh and Frederic Y.M. Wan.

2. Modeling the activity of nerve cells
2.1. Biological Backoround

The fundamental unit of the nervous system is the nerve cell or
neuron. Such cells have many different forms but the traditional
paradigm is that a cell has the following important features. A
branching structure called the dendritic tree, a cell body or soma
which is often about spherical or pyramidal and an axon which starts
somewhere around the cell body and extends possibly over large
distances to often bifurcate and form junctions called synapses with

'"target cells’.
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Most neurons emit action potentials which usually tend to form at
a region on the neuronal surface where there is a high density of
sodium ion channels. This region is called a trigger zone and is
often located just by the cell body. The occurrence of an action
potential can be monitored by an extracellular or intracellular

micrue]ectrnde and the times of occurrence recorded and stored in a
computer.

Evidence for the variability of the time interval between action
potentials even under ‘'steady’ input conditions is now overwhelming.
The first examples came from receptor cells called muscle spindles
of frog [ 1,10]. Neurons in mammalian brain also exhibit various
degrees of variability in their interspike intervals, the name often
employed for the time between action potentials. Interest in this
variability from an experimental point of view comes from classify-
ing the pattern of activity in accordance with anatomical location
[19] or with the behavioral state of the animal [2]. There is also
the question of information transmission in the nervous system which
seeks to explain how a sequence of spikes is read by target cells
when the sequence is apparently random [18]. Here it is opportune
to point out that variability of interspike times does not necessar-
ily imply randomness in the mechanisms which produce the spikes.

This can be seen by applying Scharstein's [23] novel graphical

method of predicting a spike train from a given input current to a
simpie neuron model. The input may be completely regular (e.g. sinu-
soidal) yet the output train can be highly irregular. The distinc-
tion between this and the 'random spike train' can be found by
computing serial correlation coefficients.

If the spike sequence from a neuron is random we address the
question of how this randomness arises and attempt to elucidate the
pattern of activity of cells with the aid of models for nerve cell
activity. There are thought to be two main sources of randomness
which contribute to the variability of the interspike interval.
These are fluctuations in the properties of the spike generating
mechanism and the random nature of the synaptic input. An example
of a study of the former is that of Levine & Shefner [17]. Concern-
ing the latter 1t should be noted that many neurons are covered with
possibly thousands of synapses which are not all synchronized in
their activity so that particularly for a 'spontaneously active'

cell, the randomness of the synaptic input is a good candidate for
producing variability in the spike train,

We will consider a few models of nerve cell activity with random
input. The physiologist will realize how much reality is left out
of these models, but unfortunately even the 'simple' models generate
very difficult probliems when we begin to ask for quantitative
results. A review of the subject is contained in Holden's monograph

[14].

2.2 Stein's model

In this model which was introduced by Stein [24], the spatial extent
of the cell is ignored. Some justification for this comes from the
existence of trigger zones which are usuaily quite small. Based on
neurophysiological investigations with intracellular electrodes the
electrical activity of some cells can be approximated as that of a
resistor and capacitor in parallel. This leads to exponential decay
of the depolarization in the absence of inputs. The model actually
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dates back to 1907 when it was used by Lapicque [16]. The input
currents to this model cellare approximated by delta functions and
their arrival times made to coincide with the times of occurrence of
events in simple Poisson processes,

let X{t) be the depolarization at time t with initial value
X{0) = x. Excitation increases X(t) by dq1 units and has mean
rate Aq; inhibition arrives independently, decreasing X{t) by
a7 and has mean rate JXp. Taking account of the exponential decay
we can write a stochastic differential equation for X{t):

(2) dX{t) = -X{t)dt + aldﬂl(t) - azdﬂz(t), X{0) = x, X(t) < 8,

where Ny(t) and Ng(t) are Poisson processes with parameters Ay
and ip. Here time 1s measured in units of the membrane time
constant. The equation is valid only for X{(t) 1less than the thres
hold for firing of action potentials which is assumed in the first
instance to be constant. Let Te(x) be the random variable

(3)  T,(x) = inf{t|X(t) > 8]X(D) = x < 6} .

We identify this as the random time between action potentiats, save
for the addition of an assumed fixed absolute refractory period.
Tg{x) is a first passage time for X{t) to level ©. The determin-
ation of the distribution function of Tg(x) requires solution of
a partial differential difference equation, whereas finding the
moments of Tg(x) requires solution of the recursion system of
ordinary differential difference equations:. With Mhp{x) the n-th
moment, these are

dM

(8) =x - ¥ MMolx + a)) +2M (x =a,) - (Ag +2,)M (x) = -nM___(x),

n =0,1,2,..., x < 6., as can be found by applying theorems on
first exit times for Markov processes [28]. Eguations such as this
have been investigated hardly at all, especially on account of the
occurrence of both forward and backward differences. The boundary
condition at 6 is that Mp(x) =0, x >e, n =1,2,... but with
12 f 0 the condition at x = -=» {5 difficult to prescribe.

2.2.1 An exact calculation

0

When 2 0 (no inhibition) we can sometimes solve {(4) for small 6
and small n exactly. A simple illustrative example will suffice.
For convenience set Xy = a; = 1 and consider the equation for the
first moment:

dM

(5) -x -+ Mi(x + 1) - M (x) = -1, x < 2.

We can restrict the domain of M; to [xq7,2) where xy <« 0. X{(t)
can only exit from ([x,,2) at tke right hand end point, It is.
sufficient for our prn%lem.tu take xq = 0 because we are prim-
arily interested in an initial condition at resting level, x = 0,
On [1,2) put My(x} = Fq(x) and on [0,1) put Mi(x) = Fa(x).
Then Fy satisfies the simple ordinary differential equation

dF1 Fy 1
(6) > P

with solution Fl(x) = x'l[x + cl]. with Cq ‘a constant of integ-
ration. This is used on [0,1):
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2 _ 2, 1
X X x{x + 1} °

(7} sz F
+ _
dx

This 1s sotved to qive

{8) Fz(x) = x'l[Zx-Fclﬁn(x-+1) +c2].

with ¢, a second constant of integration. The values of ¢4y and
co are found by imposing the conditions that M1{(x) 1is continuous
and bounded on [0,2). This leads to the solution

1 + [1/{1 - &n2)]x, x € [1,2),

2 + [1/(1 - en2)){2n{x + 1)])/x, x € [0,1).

This solution has a discontinuity at x = 2 where it jumps from a
positive value to zero (see Figure 2 of [27])). Exact calculation is
possible for other parameter values and for the second moment as
long as the threshold & is small {less than three). These calcul-
ations do reveal some interesting facts concerning the coefficient
of variation of the interspike interval., Physiologists use coef-
ficient of variation as a measure of the noisiness of the trans-
mitted signal, as it is in fact the inverse of the 'signal to noise
ratio'. It had been thought that the coefficient of variation was a
monotonically increasing function of the mean interval but calcul-
ations reveal that in some parameter ranges the dependence 1s not
monotonic but includes maxima and minima for a given threshold.
However, it seems that the predicted structure may not be observed
experimentally because it is based on a model which is not realistic
enough and other sources of randomness would drown out the structure.
Full details are in [32].

2.2.2 Numerical methods

For large & and when there is inhibition we have solved the differ-
ential difference equation (4) for small n by two methods

[5, 32). In the first approach, devised by Wolfgang Richter, the
differential difference equation is written as a coupled linear
system of ordinary differential equations which was solved using
Runge-Kutta techniques. It was possible to ascertain the dependence
of the moments of the interspike time on 6 and also on the input
rate of excitation. An attempt was made by the method of moments to
predict the three parameters of the model (the threshold to excit-
atory postsynaptic potential amplitude ratio, the time constant of
the cell membrane circuit and the rate of arrival of excitatory
inputs) for two cells of the cat cochlear nucleus. Though the pred-
icted values are all reasonable, they cannot be taken seriously
because of the great oversimplifications of the model and the assum-
ptions made in its implementation.

When there is inhibition we have employed a different technique
[ 5]. This relied on an dsymptotic form for the solution for large
negative x which contained an additive unknown constant, The
solution is thus extended to positive values of x and the
boundary condition at 6 was employed to find the previously
unknown constant. This method seemed to work although no boundary
condition was employed at large negative x. The integration of
such equations could benefit from theoretical investigations, with
particular emphasis on the development of numerical methods,
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2.2.3 Diffusion approximation

*
A diffusion approximation, X (t), may be constructed for X(t)

given by equation (2), such that the first and second infinitesimal
moments of the two processes are the same. This leads to
*

(10) dx*(t) = (=X (t) + a)dt + odW(t),

where a = Aqay - X232, 0 = (Alal2 + Agagz)l/z and MW(t) is a
standard Wiener process. The sequence of approximating processes
whose infinitesimal moments converge to those of X*(t? 1s the
Ornstein-Uhlenbeck process which has mainly appeared in connection
with modeling the phenomenon of Brownian motion. By computing
solutions of the differential difference equation (4) and comparing
them with solutions of the corresponding equation for X*(t):

2 dzMn dM
7 Tz tle-x)h g s oM ), =2,
d x

[22] it is possible to see how the diffusion approximation fairs
in estimating the threshold crossing time. This had been done for
n =1 and a general scheme for the error deduced. [313. It is
pointed out that overshoot of threshold can occur for the discon-
tinuous process X(t) but not the diffusion, X*(t).

(11)

2.2.4 Computer simulation

With package programs available for random number generation, it is
straightforward to carry out computer simulations for Stein's nerve
cell model. An example of first passage time densities for X(t)
obtained through approximating histograms is given in [297.

One feature of such densities 15 the presence of an extremely larage
tail in the case of inhibitory inputs and experimentalists'
hypotheses about the nature of the density [ 2] were possibly ex-
plained. An interesting observation was that only when there was
significant inhibition could the coefficient of variation of the
interspike interval take values greater than units [30]. This leads
to the conjecture that if the coefficient of variation is greater
than one, then the cell under observation must be receiving signif-
icant amounts of inhibitory input. More recently Frederic Wan {36]
has shown using singular perturbation methods for solving (11) with

c small, that this conjecture is true for the diffusion mode]
X" (t).

— e oo S sl E————.

Stein's model may be generalized to include an arbitrary distrib-
ution of jump amplitudes [25]. Here X{(t) satisfies the stochastic
differential equation

(12)  dX{t) = -X(t)dt + J uN(du,dt),
R

where N(.,.) 1is a Poisson random measure [ 9] such that
(13) PrN(A,t) = k] = (t.;A(A))k expl-tx (A)]/k!, AeB(R), k=0,1,2,....

A(-) being the rate measure. The moment equations (4) become

(14) dM
- X 75?.+ e Mn(x + u) A(du) - AM (x) = wnMn_](x),

166



where A 1s the total jump rate. Apart from the case already con-
sidered, the case where there is an exponential ditribution of
excitatory inputs has also been studied [26], 1in which case {14)
becomes

- -xdM -Bu o _
{15) dxrl+ a JR Mn(x + u)e du - g Hn(x) = -nMn_l(x).

A further generalization of the model equation (2) is the inclusion
of smooth noise along with the discontinuities so .that the process
is a diffusion with jumps occuring at time intervals which are
exponentially distributed:

(16)  dX(t) = -X(t)dt + a,dN,(t) - a,dN,(t) + odW(t),

which leads to the moment equations

2
02 ¥, ar,,

g T2 X T MMalbx tag) # M (x-as) - g v ap M (x)

= —an_l(X), n = 1,2'11--
This equation should yield some interesting problems in singular
perturbation methods and is of interest to see how small jitter may
infiuence the firing time in the presence of random inputs of larger
magnitudes.

2.3. Modification of Stein's mode]

In Stein's model the amplitude of the postsynaptic potentials is
independent of the value of the membrane potential at their time of
occturrence. There is much physiclogical evidence that this is not
true and that for excitation and inhibition there are reversal
potentials [ 7] at which these amplitudes become zero. To include
these reversal potentials is not difficult formally as we now have:

(18) dx(t)==-xtt)dtw+(11-x(t])aldﬁl(t)-+(12 -I(t))azdﬂz(t),x(0)=x.

where Xy and Xz are the {(constant) reversal potentials and ay
and a» are further constants. The earlier form for the expectat-
ion of X{t} [30] should read

(19)  E[X(t}] = (ky/ky} + [x - (ky/k ) Jexp(-k t),

where kqy = 1 + Xqa; + xpay, kE = A1231X3 + rpapXy, Ay and Xy
being the rate param2ters of the Poisson processes. I thank Charles
Smith for pointing this out.

The first passage time moments now satisfy a slightly different
set of differential difference equations which cannot be soplved as
a system of ordinary equations on intervals of constant size. Some
analytic results were obtained for excitation only and it was found

that for reasonable values of the reversal potentials, substantially
different firing times occur [30].

2.4 Varying Threshold

In the above models the threshold for action potential) generation
was assumed to be constant. This is an approximation for most cells
as there is intrinsic refractoriness as well as threshold elevation
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due to aftercurrents., These phenomena can be included in the above
framework by making & a function of time.

A method for handling time varying thresholds is available if
the threshold satisfies a differential equation of first order.
The following result for a general Markov process is obtained not
by viewing first passage of a scalar process X(t) to a time vary-
ing barrier VY(t} but by considering the equivalent first exit
problem in the phase plane for the vector valued process (X(t),

Y{t)).

Theorem. Let X(t) be a Markov process satisfying the stochastic
differential equation

(20)  dx{t) =o {(X{t))dt+B(X({t))dW(t) + J[ Y(X{t),u)N{du,dt),X(0) = x,
R
and let Y(t) be the solution of the deterministic equation

s{Y(t}), Y{(0) = y.

Let T(x,y) be the time of first passage of X{t) to VY(t):

L}

(21) dY{t)/dt

(22)  Tlx,y) = inf{t{x{t) = Y{(t)|X{0) = x, Y(0) = y},
and set

(23) M (xy) = E[TM(x,9)],  »
Then assuming T{x,y) is finite with probability one, the moments

satisfy the recursion system of partial-differential-integro
equations,

1,2,...

7 _
3 Hn(x,y) aM aMn

1 2
(24) & B°(x) 7 + a(x) ﬁ + 6(y) TH

+ jR Hn(x-+T(x,u))l(du) - AMp = -nM

n-1"°

with boundary conditions that Mn(x,y) =0 for x > y, assuming
X{t) starts below Y(t). |

Proof. The proof is simple upon considering the vector valued
process and applying standard results for first exit times. Further
details can be found in [34] where some applications are presented.

2.5 Spatial Models

In deterministic modeling of nerve cells spatial effects have long
known to be important. The same stimulus delivered close to the
cetl body will have a different effect when delivered on distal
dendrites. The pioneering work in this area was Rall's [21]. We
can consider instead of a point model such as Stein’'s, a spatial
model of the kind used in deterministic modeling. Such models rep-
resent portions of the cel) as cylinders with cable structures
containing resistors and capacitors. These are stil) passive elem-
ents as no intrinsic threshold properties arise. With suitable
units for time and distance, if we consider a nerve cylinder of
tength L with a Poisson input at x = xUE(D,L), we then find that
the depolarizationsatisfies the stochastic partial differential
equation
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L2 dN
(25) av _ _ 3~V _ 1

where V({(x,t}) 1is the depolarization, a is a constant, &{.) s
Dirac's deita function and N1(.) 15 a Enissnn process with rate
Ap. We will assume for simplicity that the boundary conditions are

(26) v, (0,t) =V (L.t) = 0,
and the initial data is
(27) vi{x,0) = 0,

though the results extend to other cases. An eigenfunction expan?
sion for V(x,t),

(2€) Vv{x,t}) = 6, (x)V (t),
n=0
is possible, where
| 1/72

(1/L) , n =0,
(29) o (x) -
(2/L)Y% cos(nmx/L), n=1.2...

are the spatial eigenfunctions. The random processes V,.{t) satis-
fy ordinary stochastic differential equations of the kind in
Stein's point model:

(30)  dv_(t) = -u %V (t) dt + 216, (xg)dN, (1),

where the eigenvalues are,

(31) un2 = 1 + nzwszz. n = 0,1,2,...

The moments of V(x,t) are computable as infinite sums and their
values in the steady state obtainable. Results are similar for the
case of a white noise input for the first two moments and the
covariance [33,35]. First passage theory can be applied to trun-
cated versions of the sum in (28} and lead to problems with vector-
valued jump processes which have not been previously considered.

3. Modeling the growth of populations

There are many examples of population growth where sudden decreases
occur apparently due to random disasters [12). We have attacked the
problem of estimating the persistence time of a population which is
beset by occasional disasters of fixed magnitude by considering the
population size as satisfying the stochastic differential equation

(32) dX(t) = rX(t)[1 - X(t)/K])dt - adN(t), X(0) = x € (0,K),

where K 1is a constant called carrying capacity, r 1is the intrin-
sic growth rate and o« is the magnitude of the portion of the pop-

ulation removed by a disaster. 1In the absence of disasters the
growth obeys the simple logistic law. |

For the model described by (32) the extinction of the popuiation
1s considered as the passage of X{t) to 0 for the first time.
Hence the problems in calculating extinction time are very similar
to those in determining the firing time of the nerve cell model of
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Stein. The moments M (x)}) of the extinction time now satisfy the
recursion system,
dM

(33)  rx(1 - @) g # AM(x - o) - M (x)] = -nm o (x),

n = 1,2,..., with boundary condition Mp{x) = 0 for x < 0. The
equations for n = 1,2 have been solved by numerical methods
employing a singular decomposition [11]. Probably the most inter-
esting feature of these results, apart from their guantitative
values, is the appearance of plateaus in the extinction time mom-
ents as functions of x for small disaster rates relative to the
growth rates. The implication is a safety zone for populations in
low disaster rate environments where the expected survival time

is not very sensitive to how close the population size is to carry-
ing capacity. That is, no ecological advantage is obtained by
maintaining a high level population size when disasters are relat-
ively infrequent.

We have also made the disasters a function of population size. The
simplest problem to consider is that when the amount of the pop-
ulation removed is proportional to the present magnitude of the
population. The stochastic differential equation for this case is

(34) dX(t) = rX(t)[V - X{(t)/K]ldt - aX(t)dN{t), X{0) = x, O<A<x<K.

Here the population cannot, if o« < 1, ever be driven to level
zero, so a small level population size must be chosen as the extin-
ction level. The equations corresponding to {33) become

(35)  rx(1 - ) SR 4 AN (0 - a)x) - M (x)] = -nm (),

and constant steps cannot be employed in the integration procedure.
Numerical results as well as some computer simulations which enable
a comparison to be made of the models {32) and (34) are contajned
in a forthcoming article [12]. He are currently extending these
results to incorporate a distribution of disacster ampilitudes in
both density-dependent and density independent situations [13].

There are two kinds of problems in this area that would profit from
attention. The first is the inclusion in a mode) such as (34) the
presence of smaller amplitude noise by means of a diffusion term:

(36) dX{t} = rX(t)[1 - X{(t)/xJdt - aX(t)dN{t) + odW(t),

where o is small. The effects of this extra term will be to make

zero accessible to X(t) and the appropriate moment equations will
be

2.
(37) rx(1-%) M0, o ‘:—”z’l + AMMR((T - a)x) =M (x)] = -k (x).
X

Again, such equations should lead to some interesting applications
of singular perturbation methods with boundary layers at x = 0

and x = K. A second problem worth looking at in this context is

a vector valued version of the above discontinuous model equations
50 that extinction in coupled systems of, say, predator and prey may be
considered via their first exit times. However, both of these as

yet untackled problems will present some very difficult computation-
al tasks.
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