Polygons, Quadrilaterals, and Special Parallelograms

A polygon is a closed plane figure formed by three or more segments that intersect only at their endpoints.
Each segment that forms a polygon is a side of the polygon. The common endpoint of two sides is a vertex of the polygon. A segment that connects any two nonconsecutive vertices is a diagonal.

You can name a polygon by the number of its sides. The table shows the names of some common polygons.

Number of Sides	Name of Polygon
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon
12	Dodecagon
n	n-gon

All the sides are congruent in an equilateral polygon. All the angles are congruent in an equiangular polygon. A regular polygon is one that is both equilateral and equiangular. If a polygon is not regular, it is called irregular.

A polygon is concave if any part of a diagonal contains points in the exterior of the polygon. If no diagonal contains points in the exterior, then the polygon is convex. A regular polygon is always convex.

Convex
quadrilateral

Concave quadrilateral

Warm - Up

Tell whether the following polygons are concave or convex and regular or irregular.
1.

3.
2.

4.

Angles in Polygons

Fill in the accompanying table.

Polygon	Number of Sides	Number of Triangles	Sum of Interior Angle Measures
	3	1	180°
	4	2	$2 \times 180=360^{\circ}$

Look for a pattern in the table. Write a rule for finding the sum of the measures of the interior angles of a polygon with n sides.

Examples:

1. Find the sum of the interior angles of a decagon.
2. What is the measure of each angle in a regular octagon?

Exterior Angles

Refer to the two polygons below. What do you notice about the exterior angles of any polygon?

$147^{\circ}+81^{\circ}+132^{\circ}=360^{\circ}$

$43^{\circ}+111^{\circ}+41^{\circ}+$
$55^{\circ}+110^{\circ}=360^{\circ}$

Examples:
3. Find the measure of each exterior angle of a polygon with 18 sides.
4. The measure of an exterior angle of a convex regular polygon is 36°. Find the number of sides of the polygon.
5. How many sides does a regular polygon have if each interior angle measures 160° ?
6. The sum of the interior angles of a convex regular polygon measure 1980°, how many sides does the polygon have?
7. Find the value of x.

8. Find x :

Summary

Properties and Attributes of Polygons

Lesson 6-1

Understanding properties of polygons and their angle sums is fundamental to successful work with quadrilaterals.

Theorem

The sum of the interior angle measures of a convex polygon with n sides
$S_{i}=(n-2) 180$

Theorem

The sum of the exterior angle measures, one angle at each vertex, of a convex polygon is 360°.
$S_{\mathrm{e}}=360$ (always - no matter what the polygon)

Theorem

Interior Ange + Exterior Angle $=180^{\circ}$

Homework

GUIDED PRACTICE

1. Vocabulary Explain why an equilateral polygon is not necessarily a regular polygon.

Tell whether each outlined shape is a polygon. If it is a polygon, name it by the number of its sides.
2.

3.

Tell whether each polygon is regular or irregular. Tell whether it is concave or convex.

6.

7.

8.

9. Find the measure of each interior angle of pentagon $A B C D E$.
10. Find the measure of each interior angle of a regular dodecagon.
11. Find the sum of the interior angle measures of a convex 20-gon.
12. Find the value of y in polygon $J K L M$.
13. Find the measure of each exterior angle of a regular pentagon.

Safety Use the photograph of the traffic sign for Exercises 14 and 15.
14. Name the polygon by the number of its sides.
15. In the polygon, $\angle P, \angle R$, and $\angle T$ are right angles, and $\angle Q \cong \angle S$. What are $\mathrm{m} \angle Q$ and $\mathrm{m} \angle S$?

22. Find the measure of each interior angle of quadrilateral $R S T V$.
23. Find the measure of each interior angle of a regular 18-gon.
24. Find the sum of the interior angle measures of a convex heptagon.
25. Find the measure of each exterior angle of a regular nonagon.
26. A pentagon has exterior angle measures of $5 a^{\circ}, 4 a^{\circ}, 10 a^{\circ}, 3 a^{\circ}$, and $8 a^{\circ}$. Find the value of a.

Crafts The folds on the lid of the gift box form a regular hexagon. Find each measure.
27. $\mathrm{m} \angle J K M$
28. $\mathrm{m} \angle M K L$

Algebra Find the value of x in each figure.
29.

30.

31.

Find the number of sides a regular polygon must have to meet each condition.
32. Each interior angle measure equals each exterior angle measure.
33. Each interior angle measure is four times the measure of each exterior angle.
34. Each exterior angle measure is one eighth the measure of each interior angle.

Name the convex polygon whose interior angle measures have each given sum.
35. 540°
36. 900°
37. 1800°
38. 2520°

Multi-Step An exterior angle measure of a regular polygon is given. Find the number of its sides and the measure of each interior angle.
39. 120°
40. 72°
41. 36°
42. 24°

Name:
 Chapter 6 ((eection 1) - Day 2

Date:

Polygons are classified as convex or concave.

Number of Sides	Polygon
3	triangle
4	quadrilateral
5	pentagon
6	hexagon
7	heptagon
8	octagon
9	nonagon
10	decagon
12	dodecagon
n	n-gon

Tell whether each polygon is regular or irregular. Then tell whether it is concave or convex.
1.

2.

3.

5.

6.

7.

Name each polygon by its vertices.
8.

9.

10.

example Finding a Polygon Angle Sum

Find the sum of the measures of the angles of a 15-gon.
For a 15 -gon, $n=15$.

Sum	$=(n-2) 180$		Polygon Angle-Sum Theorem
	$=(15-2) 180$		Substitute.
	$=13 \cdot 180$		Simplify.
	$=2340$		

The sum of the measures of the angles of a 15 -gon is 2340 .

Find the sum of the measures of the interior angles of each convex polygon.
11. 11-gon
12.
2. 14-gon
14.
3. 17-gon

Find the values of the variables for each polygon. Each is a regular polygon.
15.

16.

17.

Find the value of x .
18.

19.

Find the measures of an exterior angle given the number of sides of each regular polygon.
20. 16
21. 24
23. 30

The measure of an interior angle of a regular polygon is given. Find the number of sides in the polygon.
24. 144
25. 156
26. 160

The sum of the measures of the angles of a polygon with \boldsymbol{n} sides is given. Find \boldsymbol{n}.
27. 2160°
28. 2880°
29. 5760°

Properties of Parallelograms

In a parallelogram,

1. The opposite sides are parallel by definition.
2. The opposite sides are congruent.
3. The opposite angles are congruent.
4. The diagonals bisect each other.
5. Any pair of consecutive angles are supplementary.
6. Each diagonal separates it into two congruent triangles.

Theorem 6-2-1 Properties of Parallelograms

| THEOREM | HYPOTHESIS | CONCLUSION |
| :--- | :--- | :--- | :--- |
| If a quadrilateral is a
 parallelogram, then its
 opposite sides are congruent.
 $(\square \rightarrow$ opp. sides $\cong)$ | | |

Properties of Parallelograms			
	THEOREM	HYPOTHESIS	CONCLUSION
$6-2-2$	If a quadrilateral is a parallelogram, then its opposite angles are congruent. $(\square \rightarrow \text { opp. } \triangleq \cong)$		$\begin{aligned} & \angle A \cong \angle C \\ & \angle B \cong \angle D \end{aligned}$
$6-2-3$	If a quadrilateral is a parallelogram, then its consecutive angles are supplementary. ($\square \rightarrow$ cons. \measuredangle supp.)		$\begin{aligned} & \mathrm{m} \angle A+\mathrm{m} \angle B=180^{\circ} \\ & \mathrm{m} \angle B+\mathrm{m} \angle \mathrm{C}=180^{\circ} \\ & \mathrm{m} \angle \mathrm{C}+\mathrm{m} \angle D=180^{\circ} \\ & \mathrm{m} \angle D+\mathrm{m} \angle A=180^{\circ} \end{aligned}$
$6-2-4$	If a quadrilateral is a parallelogram, then its diagonals bisect each other. ($\square \rightarrow$ diags. bisect each other)		$\begin{aligned} & \overline{A Z} \cong \overline{C Z} \\ & \overline{B Z} \cong \overline{D Z} \end{aligned}$

Level A:

In exercises $14-16$, each quadrilateral is a parallelogram. Find the indicated values.

15. $a=$ \qquad $\mathrm{b}=$ \qquad $\mathrm{x}=$ \qquad $y=$ \qquad	
16. $\mathrm{a}=$ \qquad $b=$ \qquad $\mathrm{x}=$ \qquad $y=$ \qquad	

In exercises 17 - 19, what values must ' x ' and ' y ' have to make each quadrilateral a parallelogram?

17. $x=$ \qquad $y=$ \qquad	
18. $x=$ \qquad $y=$ \qquad	
19. $x=$ \qquad $y=$ \qquad	

Level B

20.

In the accompanying diagram of parallelogram $A B C D$, side $\overline{A D}$ is extended through D to E and $\overline{D B}$ is a diagonal. If $\mathrm{m} \angle E D C=65$ and $\mathrm{m} \angle C B D=85$, find $\mathrm{m} \angle C D B$.

21. In parallelogram $L M N O$, an exterior angle at vertex O measures 72°. Find the measure, in degrees, of $\angle L$.

Summary

Properties of Parallelograms

Lesson 6-2

The properties of parallelograms make these figures useful in mechanics and construction.

A quadrilateral is a parallelogram \rightarrow all of these properties are true.

- Opposite sides are parallel.
- Opposite sides are congruent.
- Opposite angles are congruent.
- Consecutive angles are supplementary.
- Diagonals bisect each other.

Homework

Properties of Parallelograms

Parallelograms have all of these properties:
-both pairs of opposite sides parallel
-both pairs of opposite sides congruent
-both pairs of opposite angles congruent
-diagonals bisect each other
Shade the answers below to discover the corporation whose success is based on the invention of Chester Carlson.

1. If $C A=10, E K=$ \qquad .
2. If $C K=18, C X=$ \qquad .
3. If $\angle \mathrm{CEK}=85^{\circ}, \angle \mathrm{CAK}=$ \qquad .
4. If $\angle \mathrm{ECA}=130^{\circ}, \angle \mathrm{CAK}=$ \qquad .
5. If $\angle 1=40^{\circ}$ and $\angle 2=65^{\circ}, \angle E K A=$ \qquad .
6. If $E X=15, E A=$ \qquad .
7. If $C E=12, K A=$ \qquad .
8. If $\angle 8=25^{\circ}$ and $\angle 7=35^{\circ}, \angle E K A=$ \qquad E

9. If $C X=5 x-44$ and $X K=2 x+25$, then $x=$ \qquad .
10. If $\angle 7=30^{\circ}$ and $\angle 4=40^{\circ}, \angle E K A=$ \qquad .
11. If $C E=3 x+5$ and $A K=7 x-15$, then $x=$ \qquad .
12. If $\angle E C A=6 x-20$ and $\angle E K A=2 x+80$, then $x=$ \qquad .
13. If $\angle C A E=35^{\circ}, \angle A E K=$ \qquad .
14. If $\angle 2=100^{\circ}$ and $\angle 3=20^{\circ}, \angle \mathrm{CXA}=$ \qquad .
15. If $\angle \mathrm{CEK}=80^{\circ}, \angle \mathrm{EKA}=$ \qquad .
16. $\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=$ \qquad .

Chapter 6 (section 4) - Day 4
Rectangles
Definition: A rectangle is a parallelogram with one right angle.

Properties of a Rectangle

1. A rectangle has all the properties of a parallelogram.
2. A rectangle contains four right angles and is therefore equiangular.
3. The diagonals of a rectangle are congruent.

Properties of Rectangles		
If a quadrilateral is a rectangle, then it is a parallelogram.	If a parallelogram is a rectangle, then its diagonals are congruent.	

Since a rectangle is a parallelogram, a rectangle also has all the properties of parallelograms.

PART 3. RECTANGLES

Quadrilateral WXYZ is a rectangle. Use this rectangle for problems 20-22.

20.	If $W Y=19$, then $Z X=$?	
21.	If $\mathrm{WY}=19$, then $\mathrm{WT}=$?	
22.	If $\mathrm{TX}=4.5$, then $\mathrm{WY}=$?	
23.	Rectangle GALS has diago $A S=5 a-18$, then $a=$?	6 and
24.	Rectangle BOYS has diago $\mathrm{m} \angle \mathrm{XOB}=70^{\circ}$, then $\mathrm{m} \angle \mathrm{YS}$	ect at X. If

Use rectangle QRST and the given information to solve problems 25-26.

25.	QP $=6$, find RT.
26.	QT $=8$, find RS.

Solve each of the following.
27.

Practice Problems

a. If $A E=5, B C=6$, and $D C=8$, find $A C, B D, A D$, and $A B$.

b. If $B D=3 x-7$ and $C A=x+5$, find $B D, E D, C A$, and $A E$.

C. Find the measures of the numbered angles in each rectangle.

d.

If $m \angle D A C=2 x+4$ and $m \angle B A C=3 x+1$, find $m \angle B A C$.

Homework

NAME \qquad DATE \qquad
\qquad
6-4 Practice

Rectangles

ALGEBRA Quadrilateral $R S T U$ is a rectangle.

1. If $U Z=x+21$ and $Z S=3 x-15$, find $U S$.
2. If $R Z=3 x+8$ and $Z S=6 x-28$, find $U Z$.

3. If $R T=5 x+8$ and $R Z=4 x+1$, find $Z T$.
4. If $m \angle S U T=3 x+6$ and $m \angle R U S=5 x-4$, find $m \angle S U T$.
5. If $m \angle S R T=x+9$ and $m \angle U T R=2 x-44$, find $m \angle U T R$.
6. If $m \angle R S U=x+41$ and $m \angle T U S=3 x+9$, find $m \angle R S U$.

Quadrilateral $G H J K$ is a rectangle. Find each measure if $m \angle 1=37$.
7. $m \angle 2$
8. $m \angle 3$
9. $m \angle 4$
10. $m \angle 5$

11. $m \angle 6$
12. $m \angle 7$

Chepoter 6 (section 4) - Day 5
Date:

Warm - Up

1. Ouadrilateral $D E F G$ is a rectangle.

If $F D=3 x-7$ and $E G=x+5$, find $E G$.

2. Quadrilateral $A B C D$ is a rectangle. Find each measure if $m \angle 2=40$.

Rhombus
Definition: A rhombus is a parallelogram with 2 congruent consecutive sides.

Properties of a Rhombus

1. A rhombus has all the properties of a parallelogram.
2. A rhombus is equilateral.
3. The diagonals of a rhombus are perpendicular to each other.
4. The diagonals of a rhombus bisect its angles.

Square

Definition: A square is a rectangle with 2 congruent consecutive sides.

Properties of a Square

1. A square has all the properties of a rectangle.
2. A square has all the properties of a rhombus.

PART 4. SQUARES \& RHOMBI
Find the indicated measure.

30.	FISH is a square with $\mathrm{IT}=6$. Find IH and IS.
31.	If MNOP is a square, what is $\mathrm{m} \angle \mathrm{MNP}$?

Use square $A B C D$ and the given information to find each value.

32.	If $m \angle A E B=(3 x)^{\circ}$, find ' x '.
33.	If $m \angle B A C=(9 x)^{\circ}$, find ' x^{\prime} '.
34.	If $A B=2 x+4$ and $C D=3 x-5$, find $B C$. Find $B C$ and $B D$.

The perimeter of the square is 32 cm .
a.
b. $D E=10$, find $A D$.

a.	Find the length of diagonal DB.
b.	$\mathrm{DE}=10$, find AD.
	c.

Find the indicated value.

-35.	ACKJ is a rhombus. $A C=6 y+4, C K=5 y+8$, and $K J=3 y+16$. Find the value of ' y '.
- a.	Quadrilateral $D K L M$ is a rhombus. If $D K=8$, find $K L$.
b.	Quadrilateral $D K L M$ is a rhombus. If $D A=4 x$ and $A L=5 x-3$, find $D L$.
c.	The diagonals of a Rhombus are 10, and 24 cm . Find the length of the side of the rhombus.
$\begin{aligned} & m \angle 1=\ldots \ldots \\ & m \angle 2=\ldots \\ & m \angle 3=\ldots \\ & m \angle 4=\ldots \end{aligned}{ }^{\circ}{ }^{\circ} .$	Find the measures of the numbered angles in each rhombus.
$\begin{aligned} & \mathrm{m} \angle 1=\ldots \ldots{ }^{\circ} \\ & \mathrm{m} \angle 2=\ldots \ldots{ }^{\circ} \\ & \mathrm{m} \angle 3=\ldots \ldots{ }^{\circ} \\ & \mathrm{m} \angle 4=\ldots \ldots{ }^{\circ} \end{aligned}$	Find the measures of the numbered angles in each rhombus.

Properties of the Rectangle, Rhombus, and Square

Rectangle

all properties of parallelograms plus
-all diagonals are congruent
-all angles measure 90°

Rhombus

all properties of parallelograms plus
—all sides are congruent
—all diagonals are perpendicular
—all diagonals bisect opposite angles

Square
all properties of
_parallelogram
—rectangle
—rhombus

Use the properties to solve for the missing measures in the diagrams.

1. LMNO is a rectangle. If $\mathrm{LM}=16, \mathrm{MN}=12$, and $\angle 1=60^{\circ}$, find the following:
a. $\mathrm{ON}=$ \qquad d. $L X=$ \qquad g. $O X=$
b. $\mathrm{OL}=$ \qquad e. $\angle \mathrm{LON}=$ \qquad h. $\angle 3=$
\qquad
\qquad
c. $\mathrm{LN}=$ \qquad
f. $\angle 2=$ \qquad
i. $\angle 4=$ \qquad
2. $W X Y Z$ is a rhombus. If $W X=4$ and $\angle W X Y=60^{\circ}$, find the following:
a. $X Y=$ \qquad d. $\angle 2=$ \qquad g. $\mathrm{WO}=$ \qquad
b. $\angle \mathrm{ZWX}=$ \qquad e. $\angle 3=$ \qquad h. $\mathrm{OX}=$ \qquad
c. $\angle 1=$ \qquad f. $\angle 4=$
i. $W Y=$ \qquad

3. $E F G H$ is a square. If $E F=10$, find the following:
a. $F G=$ \qquad d. $\mathrm{El}=$ \qquad g. $\angle 1=$ \qquad
b. $\angle \mathrm{EFG}=$ \qquad e. IF = \qquad h. $\angle 3=$ \qquad
c. $\mathrm{EG}=$ \qquad
f. $\angle \mathrm{EIF}=$ \qquad i. $\mathrm{HF}=$ \qquad

Name:
Chapter 6 (section 6) - Day 6

Date: per:
Trepezoids
Fomework: Worksheet

Warm - Up

1. $A B C D$ is a rhombus. If $P B=12, A B=15$, and $m \angle A B D=24$, find each measure.
23) $A P$
25. $m \angle B D A$
26. $C P$
27. $m \angle A C B$
28. $W X Y Z$ is a square. If $W T=3$, find each measure.

29. ZX
30. $X Y$
31. $m \angle W T Z$
32. $m \angle W Y X$

Definition: A trapezoid is a quadrilateral with one pair of parallel sides.

Definition: An Isosceles trapezoid is a trapezoid with non parallel sides congruent.

- In an isosceles trapezoid, each pair of base angles is congruent.
- If a trapezoid has one pair of congruent base angles, then it is isosceles.
- A trapezoid is isosceles if and only if its diagonals are congruent.

Theorems
 Isosceles Trapezoids

6.21 If a trapezoid is isosceles, then each pair of base angles is congruent.
Example If trapezoid $F G H J$ is isosceles, then $\angle G \cong \angle H$ and $\angle F \cong \angle J$.

6.22 If a trapezoid has one pair of congruent base angles, then it is an isosceles trapezoid.
Example If $\angle L \cong \angle M$, then trapezoid $K L M P$ is isosceles.

6.23 A trapezoid is isosceles if and only if its diagonals are congruent.
Example If trapezoid $Q R S T$ is isosceles, then $\overline{Q S} \cong \overline{R T}$. Likewise, if $\overline{Q S} \cong \overline{R T}$, then trapezoid $Q R S T$ is isosceles.

Practice Problems

ALGEBRA Find each measure.

1. $m \angle S$

2. Trapezoid PQRS. Find the $\mathrm{m} \angle 1$ and $\angle 2$.

$\mathrm{m} \angle 1=$ \qquad

$$
\mathrm{m} \angle 2=
$$

\qquad
4. Isosceles Trapezoid ABCD.

$\mathrm{m} \angle 1=$ \qquad
$\mathrm{m} \angle 2=$ \qquad
$\mathrm{m} \angle 3=$ \qquad
$\mathrm{m} \angle 4=$ \qquad ${ }^{\circ}$

5. Find the values of the variables.

6. $A C=7 x-15, B D=4 x+15$

The midsegment of a trapezoid is the segment that connects the midpoints of the legs of the trapezoid. The theorem below relates the midsegment and the bases of a trapezoid.

$$
2 m=b_{1}+b_{2}
$$

- The midsegment of a trapezoid is parallel to each base. $\overline{A B} \| \overline{M N}$ and $\overline{A B} \| \overline{L P}$
- The length of the midsegment is one-half
the sum of the length of the bases.
$A B=\frac{1}{2}(M N+L P)$

For trapezoid $Q R T U, V$ and S are midpoints of the legs.

11. In the accompanying figure, isosceles trapezoid $A B C D$ has bases of lengths 9 and 15 and an altitude of length 4. Find $A B$.

12. Find the length of base $\overline{A B}$ of trapezoid $A B C D$.

Homework - Trapezoids

Find each measure.

1.

3. Trapezoid PQRS. Find the $\mathrm{m} \angle 1$ and $\angle 2$.

2. $\quad m \angle Y$

4. ABCD is an isosceles trapezoid. Find the $\mathrm{m} \angle 1$ and $\angle 2$.

5. MATH is an isosceles trapezoid with $\overline{\mathrm{AT}}\left|\mid \overline{\mathrm{MH}}\right.$. If $\mathrm{m} \angle \mathrm{M}=(3 x-9)^{\circ}$ and $\mathrm{m} \angle \mathrm{H}=(\mathrm{x}+3)^{\circ}$, find the value of ' x '.
6. Let $\mathrm{AC}=25$ and $\mathrm{DB}=5 \mathrm{x}$.

7. If $\mathrm{EH}=\mathrm{FG}$, and $\mathrm{m} \angle \mathrm{E}=65^{\circ}$, then $\mathrm{m} \angle \mathrm{G}=$? and $\mathrm{m} \angle \mathrm{GKJ}=$?

8. $K B=12$ and $M F=30$. Find $F B$.

9. $J N=10$, and $N L=14$. Find $K M$.

10. Find the value of x.

11. The cross section of an attic is in the shape of an isosceles trapezoid, as shown in the accompanying figure. If the height of the attic is 9 feet, $B C=12$ feet, and $A D=28$ feet, find the length of $\overline{A B}$ to the nearest foot.

12. The accompanying diagram shows ramp $\overline{R A}$ leading to level platform $\overline{A M}$, forming an angle of 45° with level ground. If platform $\overline{A M}$ measures 2 feet and is 6 feet above the ground. Find RA.

13. If $\mathrm{PQ}=15$, and $\mathrm{SR}=9$, find ST and PS .

